Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
Neurocase ; : 1-6, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687122

RESUMO

Alzheimer's Disease (AD) is the most common cause of dementia, although multiple pathologies are found in nearly half of the cases with clinically diagnosed AD. Prion diseases, such as Creutzfeldt-Jakob disease (CJD), are rare causes of dementia and typically manifest as a rapidly progressive dementia, where symptom onset to dementia most often occurs over the course of months. In this brief report, we describe a patient's typically progressive dementia with a precipitous decline at the end of their life who, on neuropathological evaluation, was found to have multiple neurodegenerative proteinopathies as well as spongiform encephalopathy due to CJD. This case of unsuspected CJD highlights a rare, but epidemiologically important, cause of sudden decline in well-established neurodegenerative dementias.

2.
Brain Behav Immun ; 119: 681-692, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636565

RESUMO

Mediterranean diets may be neuroprotective and prevent cognitive decline relative to Western diets; however, the underlying biology is poorly understood. We assessed the effects of Western versus Mediterranean-like diets on RNAseq-generated transcriptional profiles in lateral temporal cortex and their relationships with longitudinal changes in neuroanatomy, circulating monocyte gene expression, and observations of social isolation and anxiety in 38 socially-housed, middle-aged female cynomolgus macaques (Macaca fascicularis). Diet resulted in differential expression of seven transcripts (FDR < 0.05). Cyclin dependent kinase 14 (CDK14), a proinflammatory regulator, was lower in the Mediterranean group. The remaining six transcripts [i.e., "lunatic fringe" (LFNG), mannose receptor C type 2 (MRC2), solute carrier family 3 member 2 (SLCA32), butyrophilin subfamily 2 member A1 (BTN2A1), katanin regulatory subunit B1 (KATNB1), and transmembrane protein 268 (TMEM268)] were higher in cortex of the Mediterranean group and generally associated with anti-inflammatory/neuroprotective pathways. KATNB1 encodes a subcomponent of katanin, important in maintaining microtubule homeostasis. BTN2A1 is involved in immunomodulation of γδ T-cells which have anti-neuroinflammatory and neuroprotective effects. CDK14, LFNG, MRC2, and SLCA32 are associated with inflammatory pathways. The latter four differentially expressed cortex transcripts were associated with peripheral monocyte transcript levels, neuroanatomical changes determined by MRI, and with social isolation and anxiety. These results provide important insights into the potential mechanistic processes linking diet, peripheral and central inflammation, and behavior. Collectively, our results provide evidence that, relative to Western diets, Mediterranean diets confer protection against peripheral and central inflammation which is reflected in preserved brain structure and socioemotional behavior. Ultimately, such protective effects may confer resilience to the development of neuropathology and associated disease.

3.
J Alzheimers Dis ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669545

RESUMO

Background: The preclinical Alzheimer's cognitive composite (PACC) was developed for in-person administration to capture subtle cognitive decline. At the outset of the COVID-19 pandemic, cognitive testing was increasingly performed remotely by telephone or video administration. It is desirable to have a harmonized composite measurement derived from both in-person and remote assessments for identifying cognitive changes and to examine its relationship with common neuroimaging biomarkers. Objective: We defined a telehealth compatible PACC (tPACC) and examined its relationship with neuroimaging biomarkers related to neurodegeneration, brain function and perfusion, white matter integrity, and amyloid-ß. Methods: We examined 648 participants' neuroimaging and in-person and remote cognitive testing data from the Wake Forest Alzheimer's Disease Research Center's Clinical Core cohort (observational study) to calculate a modified PACC (PACC5-RAVLT) score and tPACC scores (in-person and remote). We performed Spearman/intraclass correlation coefficient (ICC) analyses for reliability of tPACC scores and linear regression models to evaluate associations between tPACC and neuroimaging. Bland-Altman plots for agreement were constructed across cognitively normal and impaired (mild cognitive impairment and dementia) participants. Results: There was a significant positive relationship between tPACCin - person and PACC5-RAVLT (Overall group: r2 = 0.94, N = 648), and tPACCin - person and tPACCremote (validation subgroup: ICC = 0.82, n = 53). Overall, tPACC showed significant associations with brain thickness/volume, gray matter perfusion, white matter free water, and amyloid-ß deposition. Conclusions: There is a good agreement between tPACCand PACC5-RAVLTfor cognitively normal and impaired individuals. The tPACC is associated with common neuroimaging markers of Alzheimer's disease.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38602189

RESUMO

Blood-based mitochondrial bioenergetic profiling is a feasible, economical, and minimally invasive approach that can be used to examine mitochondrial function and energy metabolism in human subjects. In this study, we use 2 complementary respirometric techniques to evaluate mitochondrial bioenergetics in both intact and permeabilized peripheral blood mononuclear cells (PBMCs) and platelets to examine sex dimorphism in mitochondrial function among older adults. Employing equal numbers of PBMCs and platelets to assess mitochondrial bioenergetics, we observe significantly higher respiration rates in female compared to male participants. Mitochondrial bioenergetic differences remain significant after controlling for independent parameters including demographic parameters (age, years of education), and cognitive parameters (mPACC5, COGDX). Our study illustrates that circulating blood cells, immune cells in particular, have distinctly different mitochondrial bioenergetic profiles between females and males. These differences should be taken into account as blood-based bioenergetic profiling is now commonly used to understand the role of mitochondrial bioenergetics in human health and aging.


Assuntos
Metabolismo Energético , Leucócitos Mononucleares , Mitocôndrias , Humanos , Masculino , Feminino , Mitocôndrias/metabolismo , Idoso , Metabolismo Energético/fisiologia , Leucócitos Mononucleares/metabolismo , Plaquetas/metabolismo , Envelhecimento/fisiologia , Fatores Sexuais , Caracteres Sexuais , Idoso de 80 Anos ou mais
5.
Res Sq ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38496619

RESUMO

Senescent cell accumulation contributes to the progression of age-related disorders including Alzheimer's disease (AD). Clinical trials evaluating senolytics, drugs that clear senescent cells, are underway, but lack standardized outcome measures. Our team recently published data from the first open-label trial to evaluate senolytics (dasatinib plus quercetin) in AD. After 12-weeks of intermittent treatment, we reported brain exposure to dasatinib, favorable safety and tolerability, and modest post-treatment changes in cerebrospinal fluid (CSF) inflammatory and AD biomarkers using commercially available assays. Herein, we present more comprehensive exploratory analyses of senolytic associated changes in AD relevant proteins, metabolites, lipids, and transcripts measured across blood, CSF, and urine. These analyses included mass spectrometry for precise quantification of amyloid beta (Aß) and tau in CSF; immunoassays to assess senescence associated secretory factors in plasma, CSF, and urine; mass spectrometry analysis of urinary metabolites and lipids in blood and CSF; and transcriptomic analyses relevant to chronic stress measured in peripheral blood cells. Levels of Aß and tau species remained stable. Targeted cytokine and chemokine analyses revealed treatment-associated increases in inflammatory plasma fractalkine and MMP-7 and CSF IL-6. Urinary metabolites remained unchanged. Modest treatment-associated lipid profile changes suggestive of decreased inflammation were observed both peripherally and centrally. Blood transcriptomic analysis indicated downregulation of inflammatory genes including FOS, FOSB, IL1ß, IL8, JUN, JUNB, PTGS2. These data provide a foundation for developing standardized outcome measures across senolytic studies and indicate distinct biofluid-specific signatures that will require validation in future studies. ClinicalTrials.gov: NCT04063124.

6.
Atherosclerosis ; 392: 117521, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552474

RESUMO

BACKGROUND AND AIMS: Subclinical cardiovascular disease (CVD) measures may reflect biological pathways that contribute to increased risk for coronary heart disease (CHD) events, stroke, and dementia beyond conventional risk scores. METHODS: The Multi-Ethnic Study of Atherosclerosis (MESA) followed 6814 participants (45-84 years of age) from baseline in 2000-2002 to 2018 over 6 clinical examinations and annual follow-up interviews. MESA baseline subclinical CVD procedures included: seated and supineblood pressure, coronary calcium scan, radial artery tonometry, and carotid ultrasound. Baseline subclinical CVD measures were transformed into z-scores before factor analysis to derive composite factor scores. Time to clinical event for all-cause CVD, CHD, stroke and ICD code-based dementia events were modeled using Cox proportional hazards models reported as area under the curve (AUC) with 95% Confidence Intervals (95%CI) at 10 and 15 years of follow-up. All models included all factor scores together, and adjustment for conventional risk scores for global CVD, stroke, and dementia. RESULTS: After factor selection, 24 subclinical measures aggregated into four distinct factors representing: blood pressure, atherosclerosis, arteriosclerosis, and cardiac factors. Each factor significantly predicted time to CVD events and dementia at 10 and 15 years independent of each other and conventional risk scores. Subclinical vascular composites of atherosclerosis and arteriosclerosis best predicted time to clinical events of CVD, CHD, stroke, and dementia. These results were consistent across sex and racial and ethnic groups. CONCLUSIONS: Subclinical vascular composites of atherosclerosis and arteriosclerosis may be useful biomarkers to inform the vascular pathways contributing to events of CVD, CHD, stroke, and dementia.

7.
Sci Rep ; 14(1): 4120, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374377

RESUMO

Retinal vessel calibers share anatomic and physiologic characteristics with the cerebral vasculature and can be visualized noninvasively. In light of the known microvascular contributions to brain health and cognitive function, we aimed to determine if, in a community based-study, retinal vessel calibers and change in caliber over 8 years are associated with cognitive function or trajectory. Participants in the Multi-Ethnic Study of Atherosclerosis (MESA) cohort who completed cognitive testing at Exam 5 (2010-2012) and had retinal vascular caliber measurements (Central Retinal Artery and Vein Equivalents; CRAE and CRVE) at Exam 2 (2002-2004) and Exam 5 were included. Using multivariable linear regression, we evaluated the association of CRAE and CRVE from Exam 2 and Exam 5 and their change between the two exams with scores on tests of global cognitive function (Cognitive Abilities Screening Instrument; CASI), processing speed (Digit Symbol Coding; DSC) and working memory (Digit Span; DS) at Exam 5 and with subsequent change in cognitive scores between Exam 5 and Exam 6 (2016-2018).The main effects are reported as the difference in cognitive test score per SD increment in retinal vascular caliber with 95% confidence intervals (CI). A total of 4334 participants (aged 61.6 ± 9.2 years; 53% female; 41% White) completed cognitive testing and at least one retinal assessment. On multivariable analysis, a 1 SD larger CRAE at exam 5 was associated with a lower concomitant CASI score (- 0.24, 95% CI - 0.46, - 0.02). A 1 SD larger CRVE at exam 2 was associated with a lower subsequent CASI score (- 0.23, 95%CI - 0.45, - 0.01). A 1 SD larger CRVE at exam 2 or 5 was associated with a lower DSC score [(- 0.56, 95% CI - 1.02, - 0.09) and - 0.55 (95% CI - 1.03, - 0.07) respectively]. The magnitude of the associations was relatively small (2.8-3.1% of SD). No significant associations were found between retinal vessel calibers at Exam 2 and 5 with the subsequent score trajectory of cognitive tests performance over an average of 6 years. Wider retinal venular caliber was associated with concomitant and future measures of slower processing speed but not with later cognitive trajectory. Future studies should evaluate the utility of these measures in risk stratification models from a clinical perspective as well as for screening on a population level.


Assuntos
Aterosclerose , Artéria Retiniana , Humanos , Feminino , Masculino , Vasos Retinianos , Retina , Aterosclerose/epidemiologia , Cognição , Fatores de Risco
8.
Front Neurosci ; 18: 1331677, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384484

RESUMO

Background: Frontotemporal dementia (FTD) represents a collection of neurobehavioral and neurocognitive syndromes that are associated with a significant degree of clinical, pathological, and genetic heterogeneity. Such heterogeneity hinders the identification of effective biomarkers, preventing effective targeted recruitment of participants in clinical trials for developing potential interventions and treatments. In the present study, we aim to automatically differentiate patients with three clinical phenotypes of FTD, behavioral-variant FTD (bvFTD), semantic variant PPA (svPPA), and nonfluent variant PPA (nfvPPA), based on their structural MRI by training a deep neural network (DNN). Methods: Data from 277 FTD patients (173 bvFTD, 63 nfvPPA, and 41 svPPA) recruited from two multi-site neuroimaging datasets: the Frontotemporal Lobar Degeneration Neuroimaging Initiative and the ARTFL-LEFFTDS Longitudinal Frontotemporal Lobar Degeneration databases. Raw T1-weighted MRI data were preprocessed and parcellated into patch-based ROIs, with cortical thickness and volume features extracted and harmonized to control the confounding effects of sex, age, total intracranial volume, cohort, and scanner difference. A multi-type parallel feature embedding framework was trained to classify three FTD subtypes with a weighted cross-entropy loss function used to account for unbalanced sample sizes. Feature visualization was achieved through post-hoc analysis using an integrated gradient approach. Results: The proposed differential diagnosis framework achieved a mean balanced accuracy of 0.80 for bvFTD, 0.82 for nfvPPA, 0.89 for svPPA, and an overall balanced accuracy of 0.84. Feature importance maps showed more localized differential patterns among different FTD subtypes compared to groupwise statistical mapping. Conclusion: In this study, we demonstrated the efficiency and effectiveness of using explainable deep-learning-based parallel feature embedding and visualization framework on MRI-derived multi-type structural patterns to differentiate three clinically defined subphenotypes of FTD: bvFTD, nfvPPA, and svPPA, which could help with the identification of at-risk populations for early and precise diagnosis for intervention planning.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38291734

RESUMO

OBJECTIVE: Assess the feasibility and concurrent validity of a modified Uniform Data Set version 3 (UDSv3) for remote administration for individuals with normal cognition (NC), mild cognitive impairment (MCI), and early dementia. METHOD: Participants (N = 93) (age: 72.8 [8.9] years; education: 15.6 [2.5] years; 72% female; 84% White) were enrolled from the Wake Forest ADRC. Portions of the UDSv3 cognitive battery, plus the Rey Auditory Verbal Learning Test, were completed by telephone or video within ~6 months of participant's in-person visit. Adaptations for phone administration (e.g., Oral Trails for Trail Making Test [TMT] and Blind Montreal Cognitive Assessment [MoCA] for MoCA) were made. Participants reported on the pleasantness, difficulty, and preference for each modality. Staff provided validity ratings for assessments. Participants' remote data were adjudicated by cognitive experts blinded to the in person-diagnosis (NC [N = 44], MCI [N = 35], Dementia [N = 11], or other [N = 3]). RESULTS: Remote assessments were rated as pleasant as in-person assessments by 74% of participants and equally difficult by 75%. Staff validity rating (video = 92%; phone = 87.5%) was good. Concordance between remote/in-person scores was generally moderate to good (r = .3 -.8; p < .05) except for TMT-A/OTMT-A (r = .3; p > .05). Agreement between remote/in-person adjudicated cognitive status was good (k = .61-.64). CONCLUSIONS: We found preliminary evidence that older adults, including those with cognitive impairment, can be assessed remotely using a modified UDSv3 research battery. Adjudication of cognitive status that relies on remotely collected data is comparable to classifications using in-person assessments.

10.
Geroscience ; 46(1): 841-852, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37217631

RESUMO

In humans, social participation and integration wane with advanced age, a pattern hypothesized to stem from cognitive or physical decrements. Similar age-related decreases in social participation have been observed in several nonhuman primate species. Here, we investigated cross-sectional age-related associations between social interactions, activity patterns, and cognitive function in 25 group-living female vervets (a.k.a. African green monkeys, Chlorocebus sabaeus) aged 8-29 years. Time spent in affiliative behavior decreased with age, and time spent alone correspondingly increased. Furthermore, time spent grooming others decreased with age, but the amount of grooming received did not. The number of social partners to whom individuals directed grooming also decreased with age. Grooming patterns mirrored physical activity levels, which also decreased with age. The relationship between age and grooming time was mediated, in part, by cognitive performance. Specifically, executive function significantly mediated age's effect on time spent in grooming interactions. In contrast, we did not find evidence that physical performance mediated age-related variation in social participation. Taken together, our results suggest that aging female vervets were not socially excluded but decreasingly engaged in social behavior, and that cognitive deficits may underlie this relationship.


Assuntos
Função Executiva , Comportamento Social , Humanos , Animais , Chlorocebus aethiops , Feminino , Estudos Transversais , Envelhecimento , Integração Social
11.
Health Educ Behav ; 51(1): 104-112, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37905517

RESUMO

The Black Men's Health Forum, a 6-week online health education intervention for African American men and accountability partners of African American men, was conducted to increase awareness of health issues that disproportionately affect African American men. In this article, we describe the intervention and report on the immediate benefits of the intervention, including changes in health knowledge and perception of research participation. Participants completed a pre-evaluation prior to participating in the forum and a post-evaluation after each session to capture data on sociodemographic information, medical history, health knowledge, and health behaviors. A total of 60 participants (30 African American men and 30 accountability partners) completed the forum. African American men had a mean age of 61.1 years while accountability partners had a mean age of 57.6 years. Overall health knowledge increased by 6.9 points for African American men and 2.8 points for accountability partners. Before the forum began, nine African American men reported ever participating in a research study. The proportion of African American men who reported that they would definitely participate in research in the next 12 months after participating in the forum increased by 40%. Through culturally tailored programming, the Black Men's Health Forum increased access to health information as well as African American male medical professionals and health researchers for African American men in the community. Exposure to health information resulted in significant increases in health knowledge and willingness to participate in health research among African American men.


Assuntos
Educação em Saúde , Conhecimentos, Atitudes e Prática em Saúde , Saúde do Homem , Participação do Paciente , Humanos , Masculino , Pessoa de Meia-Idade , Negro ou Afro-Americano , Comportamentos Relacionados com a Saúde
12.
Alzheimers Dement ; 20(2): 941-953, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37828734

RESUMO

INTRODUCTION: Retinal vascular network changes may reflect the integrity of the cerebral microcirculation, and may be associated with cognitive impairment. METHODS: Associations of retinal vascular measures with cognitive function and MRI biomarkers were examined amongst Multi-Ethnic Study of Atherosclerosis (MESA) participants in North Carolina who had gradable retinal photographs at Exams 2 (2002 to 2004, n = 313) and 5 (2010 to 2012, n = 306), and detailed cognitive testing and MRI at Exam 6 (2016 to 2018). RESULTS: After adjustment for covariates and multiple comparisons, greater arteriolar fractal dimension (FD) at Exam 2 was associated with less isotropic free water of gray matter regions (ß = -0.0005, SE = 0.0024, p = 0.01) at Exam 6, while greater arteriolar FD at Exam 5 was associated with greater gray matter cortical volume (in mm3 , ß = 5458, SE = 20.17, p = 0.04) at Exam 6. CONCLUSION: Greater arteriolar FD, reflecting greater complexity of the branching pattern of the retinal arteries, is associated with MRI biomarkers indicative of less neuroinflammation and neurodegeneration.


Assuntos
Aterosclerose , Fractais , Humanos , Vasos Retinianos/diagnóstico por imagem , Aterosclerose/diagnóstico por imagem , Neuroimagem , Biomarcadores , Cognição
13.
medRxiv ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38076824

RESUMO

Alzheimer's disease (AD) is influenced by a variety of modifiable risk factors, including a person's dietary habits. While the ketogenic diet (KD) holds promise in reducing metabolic risks and potentially affecting AD progression, only a few studies have explored KD's metabolic impact, especially on blood and cerebrospinal fluid (CSF). Our study involved participants at risk for AD, either cognitively normal or with mild cognitive impairment. The participants consumed both a modified Mediterranean-ketogenic diet (MMKD) and the American Heart Association diet (AHAD) for 6 weeks each, separated by a 6-week washout period. We employed nuclear magnetic resonance (NMR)-based metabolomics to profile serum and CSF and metagenomics profiling on fecal samples. While the AHAD induced no notable metabolic changes, MMKD led to significant alterations in both serum and CSF. These changes included improved modifiable risk factors, like increased HDL-C and reduced BMI, reversed serum metabolic disturbances linked to AD such as a microbiome-mediated increase in valine levels, and a reduction in systemic inflammation. Additionally, the MMKD was linked to increased amino acid levels in the CSF, a breakdown of branched-chain amino acids (BCAAs), and decreased valine levels. Importantly, we observed a strong correlation between metabolic changes in the CSF and serum, suggesting a systemic regulation of metabolism. Our findings highlight that MMKD can improve AD-related risk factors, reverse some metabolic disturbances associated with AD, and align metabolic changes across the blood-CSF barrier.

14.
bioRxiv ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37961556

RESUMO

INTRODUCTION: Mediterranean diets may be neuroprotective and prevent cognitive decline relative to Western diets, however the underlying biology is poorly understood. METHODS: We assessed the effects of Western vs. Mediterranean-like diets on RNAseq generated transcriptional profiles in temporal cortex and their relationships with changes in MRI neuroimaging phenotypes, circulating monocyte gene expression, and observations of social isolation and anxiety in 38 socially-housed, middle-aged female cynomolgus macaques. RESULTS: Diet resulted in differential expression of seven transcripts (FDR<0.05). Cyclin dependent kinase 14 ( CDK14 ), a proinflammatory regulator, was lower in the Mediterranean group. The remaining six transcripts [i.e., "lunatic fringe" ( LFNG ), mannose receptor C type 2 ( MRC2 ), solute carrier family 3 member 2 ( SLCA32 ), butyrophilin subfamily 2 member A1 ( BTN2A1 ), katanin regulatory subunit B1 ( KATNB1 ), and transmembrane protein 268 ( TMEM268 )] were higher in cortex of the Mediterranean group and generally associated with anti-inflammatory/neuroprotective pathways. KATNB1 encodes a subcomponent of katanin, important in maintaining microtubule homeostasis. BTN2A1 is involved in immunomodulation of γδ T-cells which have anti-neuroinflammatory and neuroprotective effects. CDK14 , LFNG , MRC2, and SLCA32 are associated with inflammatory pathways. The latter four differentially expressed cortex transcripts were associated with monocyte transcript levels, changes in AD-relevant brain volumes determined by MRI over the course of the study, and social isolation and anxiety. CDK14 was positively correlated with monocyte inflammatory transcripts, changes in total brain, gray matter, cortical gray matter volumes, and time alone and anxious behavior, and negatively correlated with changes in total white matter and cerebrospinal fluid (CSF) volumes. In contrast, LFNG , MRC2 , and SLCA32 were negatively correlated with monocyte inflammatory transcripts and changes in total gray matter volume, and positively correlated with CSF volume changes, and SLCA32 was negatively correlated with time alone. DISCUSSION: Collectively, our results suggest that relative to Western diets, Mediterranean diets confer protection against peripheral and central inflammation which is reflected in preserved brain structure and behavior.

15.
Alzheimers Dement (N Y) ; 9(4): e12423, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37786483

RESUMO

The recent success of disease-modifying anti-amyloid monoclonal antibodies in slowing Alzheimer's disease (AD) symptoms has been an exciting step forward for the field. Despite successfully clearing amyloid from the brain, however, only modest symptomatic improvement has been demonstrated, and treatment-related side effects such as amyloid-related imaging abnormalities (ARIA) limit use for some. These limitations suggest that fully efficacious AD treatment may require combination therapy regimens, as are used in other complex disorders such as cancer and HIV. One reasonable strategy may be to use agents that address the biological changes that predict future amyloid accumulation, or accompany amyloid accumulation in preclinical disease states. Immunometabolic pathways, including the insulin signaling pathway, are dysregulated at the earliest stages of AD, concomitant with amyloid accumulation. It is plausible that agents that target these pathways may work synergistically with anti-amyloid therapies to halt AD progression. Insulin signaling is integrally involved in innate and adaptive immune systems, with pleiotropic effects that moderate pro- and anti-inflammatory responses. Metabolic modulators that enhance insulin sensitivity and function, such as GLP-1 receptor agonists, SGLT2 inhibitors, and insulin itself have been shown to improve immune function and reduce chronic inflammation. Additional effects of insulin and metabolic modulators demonstrated in preclinical and clinical studies of AD include increased clearance of amyloid-ß, slowed tau progression, improved vascular function and lipid metabolism, reduced synaptotoxicity, and improved cognitive and functional outcomes. A large number of compounds that treat metabolic disorders have been extensively characterized with respect to mechanism of action and safety, and thus are readily available to be repurposed for combination therapy protocols. Determining the most successful combination regimens of these agents together with disease-modifying therapies, and the appropriate timing of treatment, are promising next steps in the quest to treat and prevent AD.

16.
Proc Natl Acad Sci U S A ; 120(45): e2301534120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37903257

RESUMO

L-type voltage-gated calcium (Ca2+) channels (L-VGCC) dysfunction is implicated in several neurological and psychiatric diseases. While a popular therapeutic target, it is unknown whether molecular mechanisms leading to disrupted L-VGCC across neurodegenerative disorders are conserved. Importantly, L-VGCC integrate synaptic signals to facilitate a plethora of cellular mechanisms; however, mechanisms that regulate L-VGCC channel density and subcellular compartmentalization are understudied. Herein, we report that in disease models with overactive mammalian target of rapamycin complex 1 (mTORC1) signaling (or mTORopathies), deficits in dendritic L-VGCC activity are associated with increased expression of the RNA-binding protein (RBP) Parkinsonism-associated deglycase (DJ-1). DJ-1 binds the mRNA coding for the alpha and auxiliary Ca2+ channel subunits CaV1.2 and α2δ2, and represses their mRNA translation, only in the disease states, specifically preclinical models of tuberous sclerosis complex (TSC) and Alzheimer's disease (AD). In agreement, DJ-1-mediated repression of CaV1.2/α2δ2 protein synthesis in dendrites is exaggerated in mouse models of AD and TSC, resulting in deficits in dendritic L-VGCC calcium activity. Finding of DJ-1-regulated L-VGCC activity in dendrites in TSC and AD provides a unique signaling pathway that can be targeted in clinical mTORopathies.


Assuntos
Doença de Alzheimer , Esclerose Tuberosa , Animais , Camundongos , Doença de Alzheimer/genética , Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Dendritos/metabolismo , Mamíferos/metabolismo , Esclerose Tuberosa/genética
17.
Ageing Res Rev ; 92: 102088, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37827304

RESUMO

The term extracellular vesicles (EVs) refers to a variety of heterogeneous nanovesicles secreted by almost all cell types, primarily for intercellular communication and maintaining cellular homeostasis. The role of EVs has been widely reported in the genesis and progression of multiple pathological conditions, and these vesicles are suggested to serve as 'liquid biopsies'. In addition to their use as biomarkers, EVs secreted by specific cell types, especially with stem cell properties, have shown promise as cell-free nanotherapeutics. Stem cell-derived EVs (SC-EVs) have been increasingly used as an attractive alternative to stem cell therapies and have been reported to promote regeneration of aging-associated tissue loss and function. SC-EVs treatment ameliorates brain and peripheral aging, reproductive dysfunctions and inhibits cellular senescence, thereby reversing several aging-related disorders and dysfunctions. The anti-aging therapeutic potential of SC-EVs depends on multiple factors, including the type of stem cells, the age of the source stem cells, and their physiological state. In this review, we briefly describe studies related to the promising effects of SC-EVs against various aging-related pathologies, and then we focus in-depth on the therapeutic benefits of SC-EVs against Alzheimer's disease, one of the most devastating neurodegenerative diseases in elderly individuals. Numerous studies in transgenic mouse models have reported the usefulness of SC-EVs in targeting the pathological hallmarks of Alzheimer's disease, including amyloid plaques, neurofibrillary tangles, and neuroinflammation, leading to improved neuronal protection, synaptic plasticity, and cognitive measures. Cell culture studies have further identified the underlying molecular mechanisms through which SC-EVs reduce amyloid beta (Aß) levels or shift microglia phenotype from pro-inflammatory to anti-inflammatory state. Interestingly, multiple routes of administration, including nasal delivery, have confirmed that SC-EVs could cross the blood-brain barrier. Due to this, SC-EVs have also been tested to deliver specific therapeutic cargo molecule/s (e.g., neprilysin) to the brain. Despite these promises, several challenges related to quality control, scalability, and biodistribution remain, hindering the realization of the vast clinical promise of SC-EVs.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Camundongos , Animais , Humanos , Idoso , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Distribuição Tecidual , Vesículas Extracelulares/metabolismo , Células-Tronco/metabolismo
18.
Sci Rep ; 13(1): 15779, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737298

RESUMO

Studies over the last 100 years have suggested a link between inflammation, infectious disease, and Alzheimer's Disease (AD). Understanding how the immune system changes during the development of AD may facilitate new treatments. Here, we studied an aging cohort who had been assessed for AD pathology with amyloid positron emission tomography and cognitive testing, and conducted high dimensional flow cytometry on peripheral blood mononuclear and cerebrospinal fluid cells. Participants were assigned a classification of being amyloid negative cognitively normal, amyloid positive cognitively normal (APCN), or amyloid positive mild cognitive impairment (APMCI), an early stage of AD. We observed major alterations in the peripheral innate immune system including increased myeloid and plasmacytoid dendritic cells in the blood of APMCI participants. When the adaptive immune system was examined, amyloid positive participants, regardless of cognitive status, had increased CD3+ T cells. Further analyses of CD4+ and CD8+ T cells revealed that APMCI participants had an increase in more differentiated phenotype T cells, such as effector memory and effector memory CD45RA expressing (TEMRA), compared to those with normal cognition. When T cell function was measured, we observed that T cells from APCN participants had increased IFNγ+GzB- producing cells compared to the other participants. In contrast, we demonstrate that APMCI participants had a major increase in T cells that lacked cytokine production following restimulation and expressed increased levels of PD-1 and Tox, suggesting these are exhausted cells. Rejuvenation of these cells may provide a potential treatment for AD.


Assuntos
Doença de Alzheimer , Exaustão das Células T , Humanos , Linfócitos T CD8-Positivos , Leucócitos Mononucleares , Tomografia Computadorizada por Raios X , Proteínas Amiloidogênicas
19.
ACS Chem Neurosci ; 14(20): 3745-3751, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37724996

RESUMO

The microtubule (MT) instability observed in Alzheimer's disease (AD) is commonly attributed to hyperphosphorylation of the MT-associated protein, tau. In vivo PET imaging offers an opportunity to gain critical information about MT changes with the onset and development of AD and related dementia. We developed the first brain-penetrant MT PET ligand, [11C]MPC-6827, and evaluated its in vivo imaging utility in vervet monkeys. Consistent with our previous in vitro cell uptake and in vivo rodent imaging experiments, [11C]MPC-6827 uptake increased with MT destabilization. Radioactive uptake was inversely related to (cerebrospinal fluid) CSF Aß42 levels and directly related to age in a nonhuman primate (NHP) model of AD. Additionally, in vitro autoradiography studies also corroborated PET imaging results. Here, we report the preliminary results of PET imaging with [11C]MPC-6827 in four female vervet monkeys with high or low CSF Aß42 levels, which have been shown to correlate with the Aß plaque burden, similar to humans.


Assuntos
Doença de Alzheimer , Animais , Feminino , Humanos , Chlorocebus aethiops , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Microtúbulos/metabolismo , Primatas/metabolismo , Biomarcadores/líquido cefalorraquidiano , Fragmentos de Peptídeos
20.
Nat Med ; 29(10): 2481-2488, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37679434

RESUMO

Cellular senescence contributes to Alzheimer's disease (AD) pathogenesis. An open-label, proof-of-concept, phase I clinical trial of orally delivered senolytic therapy, dasatinib (D) and quercetin (Q), was conducted in early-stage symptomatic patients with AD to assess central nervous system (CNS) penetrance, safety, feasibility and efficacy. Five participants (mean age = 76 + 5 years; 40% female) completed the 12-week pilot study. D and Q levels in blood increased in all participants (12.7-73.5 ng ml-1 for D and 3.29-26.3 ng ml-1 for Q). In cerebrospinal fluid (CSF), D levels were detected in four participants (80%) ranging from 0.281 to 0.536 ml-1 with a CSF to plasma ratio of 0.422-0.919%; Q was not detected. The treatment was well-tolerated, with no early discontinuation. Secondary cognitive and neuroimaging endpoints did not significantly differ from baseline to post-treatment further supporting a favorable safety profile. CSF levels of interleukin-6 (IL-6) and glial fibrillary acidic protein (GFAP) increased (t(4) = 3.913, P = 0.008 and t(4) = 3.354, P = 0.028, respectively) with trending decreases in senescence-related cytokines and chemokines, and a trend toward higher Aß42 levels (t(4) = -2.338, P = 0.079). In summary, CNS penetrance of D was observed with outcomes supporting safety, tolerability and feasibility in patients with AD. Biomarker data provided mechanistic insights of senolytic effects that need to be confirmed in fully powered, placebo-controlled studies. ClinicalTrials.gov identifier: NCT04063124 .


Assuntos
Doença de Alzheimer , Humanos , Feminino , Idoso , Idoso de 80 Anos ou mais , Masculino , Doença de Alzheimer/líquido cefalorraquidiano , Senoterapia , Projetos Piloto , Estudos de Viabilidade , Dasatinibe , Biomarcadores , Peptídeos beta-Amiloides/líquido cefalorraquidiano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA